Today’s Topics

• Soil testing
• Recommendations
• Fertilizers
• Amendments
What is a soil test?

• Dried, ground & sieved soil
• Sample measurement
• Chemical extraction (extractable nutrients)
• Analysis
• Results to formulate recommendations
A Good Soil Sample

- Composite of the area
- 6 inch profile
- Collect same time each year
- Before amendments are applied
Soil test is NOT ideal for...

- Measuring transient/leachable nutrients like N & S
 Exception-PSNT (NO₃)
- Inadequate sample depths
- Post fertilization/liming
Soil testing and Plant analysis

<table>
<thead>
<tr>
<th>SOIL</th>
<th>PLANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrient availability</td>
<td>Nutrient uptake</td>
</tr>
<tr>
<td>Not good measuring</td>
<td>Best for N, S and micronutrients</td>
</tr>
<tr>
<td>transient/leachable nutrients</td>
<td>Cannot predict soil pH or soil interactions</td>
</tr>
<tr>
<td>Best to measure pH</td>
<td>Confirms plant sufficiency</td>
</tr>
<tr>
<td>Good to determine lime and fertilizer</td>
<td></td>
</tr>
<tr>
<td>applications</td>
<td></td>
</tr>
</tbody>
</table>

- Plant analysis should be used in combination with soil test results
<table>
<thead>
<tr>
<th>SampleID</th>
<th>Farm ID</th>
<th>Sample Number</th>
<th>Water pH</th>
<th>Buffer Value</th>
<th>M1P</th>
<th>P rating</th>
<th>M1K</th>
<th>K rating</th>
<th>M1Ca</th>
<th>Ca rating</th>
<th>M1Mg</th>
<th>Mg rating</th>
<th>CropCode</th>
<th>CropCode2</th>
<th>Limestone Tons/A</th>
<th>Nitrogen</th>
<th>Phosphate</th>
<th>Potash</th>
<th>Nitrogen</th>
<th>Phosphate</th>
<th>Potash</th>
</tr>
</thead>
<tbody>
<tr>
<td>453177</td>
<td>F52</td>
<td>1</td>
<td>6.31</td>
<td>52</td>
<td>H</td>
<td>124</td>
<td>M</td>
<td>2022</td>
<td>S</td>
<td>136</td>
<td>CR150</td>
<td>0</td>
<td>180</td>
<td>0</td>
<td>70</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>453178</td>
<td>F52</td>
<td>2</td>
<td>6.15</td>
<td>23</td>
<td>M</td>
<td>91</td>
<td>M</td>
<td>1882</td>
<td>S</td>
<td>190</td>
<td>CR150</td>
<td>0</td>
<td>180</td>
<td>70</td>
<td>70</td>
<td>S</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453179</td>
<td>F52</td>
<td>3</td>
<td>5.85</td>
<td>53</td>
<td>H</td>
<td>136</td>
<td>M</td>
<td>1574</td>
<td>S</td>
<td>111</td>
<td>CR150</td>
<td>1</td>
<td>180</td>
<td>0</td>
<td>70</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453180</td>
<td>F52</td>
<td>4</td>
<td>6.26</td>
<td>55</td>
<td>H</td>
<td>170</td>
<td>H</td>
<td>1694</td>
<td>S</td>
<td>132</td>
<td>CR150</td>
<td>0</td>
<td>180</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453182</td>
<td>F52</td>
<td>5</td>
<td>6.63</td>
<td>39</td>
<td>H</td>
<td>206</td>
<td>H</td>
<td>2052</td>
<td>S</td>
<td>155</td>
<td>CR150</td>
<td>0</td>
<td>180</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453183</td>
<td>F52</td>
<td>6</td>
<td>6.02</td>
<td>9</td>
<td>L</td>
<td>103</td>
<td>M</td>
<td>1568</td>
<td>S</td>
<td>172</td>
<td>CR150</td>
<td>1</td>
<td>180</td>
<td>140</td>
<td>70</td>
<td>S</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453184</td>
<td>F52</td>
<td>7</td>
<td>6.64</td>
<td>16</td>
<td>L</td>
<td>99</td>
<td>M</td>
<td>1927</td>
<td>S</td>
<td>137</td>
<td>CR150</td>
<td>0</td>
<td>180</td>
<td>140</td>
<td>70</td>
<td>S</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453185</td>
<td>F52</td>
<td>8</td>
<td>5.3</td>
<td>9</td>
<td>L</td>
<td>84</td>
<td>L</td>
<td>1039</td>
<td>S</td>
<td>140</td>
<td>CR150</td>
<td>2</td>
<td>180</td>
<td>140</td>
<td>140</td>
<td>S</td>
<td>0</td>
<td>40</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453186</td>
<td>F52</td>
<td>9</td>
<td>6.34</td>
<td>16</td>
<td>L</td>
<td>128</td>
<td>M</td>
<td>1622</td>
<td>S</td>
<td>161</td>
<td>CR150</td>
<td>0</td>
<td>180</td>
<td>140</td>
<td>70</td>
<td>S</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453187</td>
<td>F52</td>
<td>10</td>
<td>6.18</td>
<td>14</td>
<td>L</td>
<td>69</td>
<td>L</td>
<td>1458</td>
<td>S</td>
<td>134</td>
<td>CR150</td>
<td>0</td>
<td>180</td>
<td>140</td>
<td>140</td>
<td>S</td>
<td>0</td>
<td>40</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453188</td>
<td>F52</td>
<td>11</td>
<td>6.28</td>
<td>18</td>
<td>L</td>
<td>48</td>
<td>L</td>
<td>1598</td>
<td>S</td>
<td>118</td>
<td>CR150</td>
<td>0</td>
<td>180</td>
<td>140</td>
<td>140</td>
<td>S</td>
<td>0</td>
<td>40</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453189</td>
<td>F52</td>
<td>12</td>
<td>5.91</td>
<td>22</td>
<td>M</td>
<td>78</td>
<td>L</td>
<td>1443</td>
<td>S</td>
<td>148</td>
<td>CR150</td>
<td>1</td>
<td>180</td>
<td>70</td>
<td>140</td>
<td>S</td>
<td>0</td>
<td>20</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453190</td>
<td>F52</td>
<td>13</td>
<td>6.27</td>
<td>29</td>
<td>M</td>
<td>116</td>
<td>M</td>
<td>1701</td>
<td>S</td>
<td>147</td>
<td>CR150</td>
<td>0</td>
<td>180</td>
<td>70</td>
<td>70</td>
<td>S</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453191</td>
<td>F52</td>
<td>14</td>
<td>5.92</td>
<td>10</td>
<td>L</td>
<td>100</td>
<td>M</td>
<td>1437</td>
<td>S</td>
<td>136</td>
<td>CR150</td>
<td>1</td>
<td>180</td>
<td>140</td>
<td>70</td>
<td>S</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453192</td>
<td>F52</td>
<td>15</td>
<td>6.34</td>
<td>9</td>
<td>L</td>
<td>85</td>
<td>L</td>
<td>2045</td>
<td>S</td>
<td>256</td>
<td>CR150</td>
<td>0</td>
<td>180</td>
<td>140</td>
<td>140</td>
<td>S</td>
<td>0</td>
<td>40</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453193</td>
<td>F52</td>
<td>16</td>
<td>6.59</td>
<td>24</td>
<td>M</td>
<td>102</td>
<td>M</td>
<td>1740</td>
<td>S</td>
<td>149</td>
<td>CR150</td>
<td>0</td>
<td>180</td>
<td>70</td>
<td>70</td>
<td>S</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453194</td>
<td>F52</td>
<td>17</td>
<td>7.12</td>
<td>14</td>
<td>L</td>
<td>120</td>
<td>M</td>
<td>2241</td>
<td>S</td>
<td>162</td>
<td>CR150</td>
<td>0</td>
<td>180</td>
<td>140</td>
<td>70</td>
<td>S</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453195</td>
<td>F52</td>
<td>18</td>
<td>6.92</td>
<td>16</td>
<td>L</td>
<td>54</td>
<td>L</td>
<td>1970</td>
<td>S</td>
<td>124</td>
<td>CR150</td>
<td>0</td>
<td>180</td>
<td>140</td>
<td>140</td>
<td>S</td>
<td>0</td>
<td>40</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453196</td>
<td>F52</td>
<td>19</td>
<td>6.63</td>
<td>12</td>
<td>L</td>
<td>119</td>
<td>M</td>
<td>1623</td>
<td>S</td>
<td>183</td>
<td>CR150</td>
<td>0</td>
<td>180</td>
<td>140</td>
<td>70</td>
<td>S</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453197</td>
<td>F52</td>
<td>20</td>
<td>5.95</td>
<td>10</td>
<td>L</td>
<td>109</td>
<td>M</td>
<td>1383</td>
<td>S</td>
<td>142</td>
<td>CR150</td>
<td>1</td>
<td>180</td>
<td>140</td>
<td>70</td>
<td>S</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453198</td>
<td>F52</td>
<td>21</td>
<td>6.4</td>
<td>14</td>
<td>L</td>
<td>98</td>
<td>M</td>
<td>1933</td>
<td>S</td>
<td>201</td>
<td>CR150</td>
<td>0</td>
<td>180</td>
<td>140</td>
<td>70</td>
<td>S</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453199</td>
<td>F52</td>
<td>22</td>
<td>5.97</td>
<td>9</td>
<td>L</td>
<td>127</td>
<td>M</td>
<td>1215</td>
<td>S</td>
<td>117</td>
<td>CR150</td>
<td>1</td>
<td>180</td>
<td>140</td>
<td>70</td>
<td>S</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453200</td>
<td>F52</td>
<td>23</td>
<td>5.66</td>
<td>7</td>
<td>L</td>
<td>80</td>
<td>L</td>
<td>1121</td>
<td>S</td>
<td>165</td>
<td>CR150</td>
<td>2</td>
<td>180</td>
<td>140</td>
<td>140</td>
<td>S</td>
<td>0</td>
<td>40</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453201</td>
<td>F52</td>
<td>24</td>
<td>6.24</td>
<td>20</td>
<td>M</td>
<td>100</td>
<td>M</td>
<td>1827</td>
<td>S</td>
<td>199</td>
<td>CR150</td>
<td>0</td>
<td>180</td>
<td>70</td>
<td>70</td>
<td>S</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453202</td>
<td>F52</td>
<td>25</td>
<td>6.2</td>
<td>11</td>
<td>L</td>
<td>134</td>
<td>M</td>
<td>1336</td>
<td>S</td>
<td>139</td>
<td>CR150</td>
<td>0</td>
<td>180</td>
<td>140</td>
<td>70</td>
<td>S</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fertilizer Recommendations

• Provided in pounds nutrient per acre
• Source of nutrient is your choice
• Basis:
 – Soil test results
 – Expected or desired yield
 – Nutrient removal rate or amount to increase rating
 – Quick build or sustainable application rate
 – Cost of nutrients
 – Cost of application
Fertilizer Selection

- Cost- per lb. nutrient and shipping/application fees
- Dry - blend or ammoniated
- Liquid / fluid
- Manures or by-products
- Storage capabilities

UAN 32-0-0 $245 per ton (1/20/16)
2,000 lbs fertilizer x 0.32 = 640 lbs. N

$245 ÷ 640 lbs. N = $0.38 per lb N
Dry (granular) Fertilizers

- Usually less expensive per pound of nutrient
- Higher nutrient percentages
- Great for macro or primary nutrients
- Minerals can “sort” during transport/application
- Incorporation can be issue
Ammoniated Fertilizers

- Chemically combined in ammonium form
- All nutrients in single pellet-equal distribution
- Micros available
- Cost
- Availability
Liquid Fertilizers

- Easy to use
- Can be single nutrient or several (complete) formulations
- Effectiveness is same as other fertilizers (by pound)
- Good for applying micros
- Requires specialized storage and application equipment (sprayers/pumps/tanks)
- Containment regs
Liquid Fertilizers

Clear

• Completely dissolved
• Easy to use
• Low to high nutrient concentrations
• Cost per pound of nutrient relatively high
• Long storage as long as held above freezing
Liquid Fertilizers

Suspended

- Higher nutrient concentrations
- Fine clays added to keep nutrients from settling
- Requires constant agitation
- Reduced shelf life
- Cost
Liquid Fertilizers-Ground or Foliar

• Applied during growing season
• Rapid uptake
• Foliar-
 – Phytotoxicity- excessive nutrients
 – uptake is limited-make take repeated applications
 – Good for areas with limited root uptake
 – Quick supplementation
Nutrient Density

- 10 – 11 lbs. per gallon
- 9 – 10 gallons supply same as 100 lbs. dry fertilizer

\[22 - 0 - 0 \]

\[100 \times 0.22 = 22 \text{ lbs. N dry} \]

\[11 \times 0.22 = 2.42 \text{ lbs. N per gallon} \]

\[22 \div 2.42 = 9.1 \text{ gallons} \]
Comparing N Cost

Prices (1/20/2016) $ per ton

Urea 46-0-0 $375 (untreated)

Liquid 4-12-8 $21 gal

11(lbs/gal) x .04 = 0.44 lb. N

$21/gallon ÷ 0.44 lbs. N / gal = $47.73 per lb N

2,000 lbs fertilizer x 0.46 = 920 lbs. N

$375 ÷ 920 lbs. N = $0.41 per lb N
Comparing P2O5 Cost

Prices (1/20/2016) $ per ton

DAP 18-46-0 $470

\[
2,000 \text{ lbs fertilizer} \times 0.46 = 920 \text{ lbs. P2O5} \\
$470 \div 920 \text{ lbs. P2O5} = \text{$0.51 per lb P2O5}
\]

Liquid 4-12-8 $21 gal

\[
11(\text{lbs/gal}) \times 0.12 = 1.32 \text{ lbs. P2O5} \\
$21/\text{gallon} \div 1.32 \text{ lbs. P2O5/gal} = \text{$15.91 per lb P2O5}
\]
Comparing K2O Cost

Prices (1/20/2016) $ per ton

Potash 0-0-60 $355

- 2,000 lbs fertilizer x 0.60 = 1200 lbs. K2O
- $355 ÷ 1200 lbs. K2O = $0.29 per lb K2O

Liquid 4-12-8 $21 gal

- 11(lbs/gal) x .08 = 0.88 lb. K2O
- $21/gallon ÷ 0.88 lbs. K2O/ gal = $23.86 per lb K2O
Animal Manures

- Cheap (if near source)
- Good for building organic matter/ low testing soils
- Slow release
- Generally high % nutrients
- Can build P quickly
Which nutrient source to use?

- Agronomic response same per nutrient
- Economics- Cost of nutrient unit
- Maximum returns by applying deficient nutrient
- Maximize profit-Rate of fertilization that produces at or near maximum yield
- Quality of dealer service
Lime Quality

Purity and Fineness
• CCE-Calcium Carbonate Equivalent
 – 75% minimum
• Crushed or ground- Screen size
 • = or not less than 85% passing 10 mesh
 • Not less than 50% passing 40 mesh
• PSE-Particle Size Efficiency
 • Efficiency factors related to % passing each mesh
• RNV-Relative Neutralizing Value
 • 65% minimum

https://tn.gov/assets/entities/agriculture/attachments/AgLicLimeRules.pdf
Lime Quality

• Relative Neutralizing Value (RNV)
 – Purity - Calcium Carbonate Equivalent (CCE)
 – Fineness - % on 10 mesh
 - % passing 10 mesh
 - % passing 40 mesh

• CCE, fineness (10 and 40 mesh) and RNV should be on label or delivery slip
Ag Lime: Ground or Pelletized

• Calcitic or Dolomitic
• Pelletized is finely ground ag limestone bonded together
 – Contains about 9% lignosulfonates (for binding)
 – Does not react faster than ag lime
• Application rates
 – Depends on RNV
 – If pelletized is higher (RNV), then you can reduce rates but compare cost
Liquid Lime

- Water and finely ground limestone
- RNV- usually much lower than ag or pelletized
- Usually marketed as Ca amendment (not Ag Limestone)
- Cost
 - Material
 - More trips
Calculating Application Rates

1 ton/acre (RNV 65)

Ex. RNV 85 \[\frac{65}{85} = 0.76 \]
0.76 \(\times \) 2000 = 1,560 lbs. limestone

Ex. RNV 50 \[\frac{65}{50} = 1.3 \]
1.3 \(\times \) 2000 = 2,600 lbs. limestone

Ex. RNV 26 \[\frac{65}{26} = 2.5 \]
2.5 \(\times \) 2000 = 5,000 lbs.

Liquid- RNV 26 1 gal weighs 10 lbs.
5000 \(\div \) 10 = 500 gal liquid product
Take Home

• Apply fertilizer by soil test
• Plant response is the same per lb of plant nutrient
• Compare cost
• Be smart concerning micros
• Know your lime quality – expect an analysis
Soil, Plant & Pest Center
Ellington Agricultural Center
– 5201 Marchant Drive
– Nashville
– 615.832.5850
https://ag.tennessee.edu/spp
www.facebook.com/SoilPlantPestCenter
djoines@utk.edu